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INTRODUCTION

The effects of wind, temperature, and density on a projectile are easy to
understand. Acquiring the necessary meteorological (met) data so corrections
can be applied before firing the projectile, however, is easier to talk about
than to do. Often a weapon will be fired using a met message several hours
old, or a projectile will be fired in a direction opposite to that which the
radiosonde balloon was carried by the prevailing wind. Because the balloon
and projectile will never be at the same place at the same time, the met
message will always be stale. Also, no radiosonde and angular tracking system
is completely free of measurement error. Thus we will always be firing a
projectile using met data that is not entirely correct for the current time
and location. The purpose of this study is to show in a statistical manner

. how range and deflection probable errors increase due to space-time staleness
and to measurement uncertainty of the ballistic met message parameters. The
probable errors generated for this study were attained using equations
developed by Swingle* that describe the variability and measurement errors of
the ballistic met message parameters.

DISCUSSION

There are four basic types of met error that will affect the range accuracy of
a field artillery weapon. These errors are (1) time and space variability of
ballistic wind, (2) measurement uncertainty of ballistic wind, (3) time and
space variability of ballistic temperature and density, and (4) measurement
uncertainty of ballistic temperature and density. Because of the relationship
between temperature and density, as seen by the equation of state, it is
necessary to compute the combined effect of their variations.

All of the above individual errors in the met data will be expressed as
variances for the range and deflection components of trajectory. The sum of
the range and deflection variances then can be converted to standard
deviations and finally to elliptical probable errors of the range and
deflection estimate. Expressing the total range and deflection variances in

.= equation form:

X= ST.RWV + RWM + ST.RTDV + RTD)

V" ST'DWV + DWN (2)

*Stngle, D. M., unpublished work, US Army Atmospheric Sciences Laboratory,
lhtite Sands Missile Range, N1, 1979.
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where

X1 - total range variance (*)
Y2 a total deflection variance (')

ST - space-time staleness factor (min)

RWV a range impact variance due to wind variability (n'/min)

RWM - range impact variance due to wind measurement error (mI)

RTDV - range.impact variance due to temperature and density variability
('/min)

RTUM - range impact variance due to temperature and density measurement
error (n')

DI/V - deflection impact variance due to wind variability (mt/min)

OM a deflection impact variance due to wind measurement error (m').

Note that the temperature and density contributions to the deflection
component of error have been dropped since they are negligible compared to the
wind effects.

MeW studies' ' of wind variability in the last 30 years have focused on
finding how the wind vector at a point varied in tim or how the wind vector
varied from point to point in space at the same instant in time. Studies' $
have also been conducted to relate wind temporal and special variability. The
space-time relation of parameter variability is important to this study since
we went to show how accurac of the weapon system is affected by spacial as
well as temporal staleness of the ballistic mt message. Since a simple
scaling factor is used to equate spacial and temporal variation, the spacial
staleness of the at message due to the separation between the radiosonde and
the projectile can be expressed as a staleness in tim. 1he wind studies" at

'Lownthal, N., and R. Bellucci, uVarability of Ballistic Winds,* ECOM-3529,
US ArW Electronics Commnd, Fort Monmouth, NJ, 1970.

2Durst, C. S., *The Variation of Wind With Tim and Distance,' Geophysical
Memoir No 93, UK Meteorological Office, 1954.
$*Exercise Sumerwind in the Meppen Area (West German),N Mot Working Paper No
1, NATO Report, 4-20 July 1966.

"Report on Exercise Summerwind by Denmark and the Netherlands,* Met Working
Paper No 85, NATO Report, 1971.

lrmold, A., and R. Bellucci, NVariability of Ballistic Meteorological
Paramters," Tech Mon M-1913, US ArW Signal Corps Engineering Laboratories,
Fort Mumouth, 13. 1957.
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Happen, West Germany, indicate an equivalence in ballistic wind variability
between 1 h in time and 30 km in distance. This can be simplified to a 2-min
time interval being equivalent to a spacial separation of 1 km. This scaling
factor will certainly vary some from Oay to day and from location to location,
but the value of the 2 min/km will be used for this study since it was
obtained in the NATO area and is comparable in magnitude to the results found
by others.$

We can now define the total space-time factor, used in equations (1) and (2).
representing the total space and time age of the met information.

ST = 2.S + T (3)

where

S = the separation of balloon and projectile when both are at the
projectile's maximum trajectory ordinate (kin)

T = the time interval between the measurement of the met data and the
firing of the artillery weapon (min)

The factor 2 which multiplies S is the scaling factor in mtn/km that relates
space to time variation. The variability in windspeed due to a separation of
1 km in space between points, then, is approximately equivalent to the
variability during a 2-mn time interval at a single point.

In the above expression, T is the time between measurement of the met
parameter and the firing of the weapon by the artilleryman. The actual
measurement of wind, temperature, and density is made throughout the layer
from the ground up to whichever ballistic line the projectile will reach.
Depending on the thickness of the layer, the balloon could take 10, 20 or more
minutes to reach the altitude of the desired ballistic line. A question
arises, then, as to which point in time we take as the time of measurement.
For this study it was assumed that the measurement time occurs when the
radiosonde balloon reaches the altitude that corresponds to the midpoint or
maximum ordinate of the projectile trajectory. Factors contributing to the
time staleness of the met data are time spent tracking the balloon above the
ballistic line of interest, computation of the ballistic met message, lag
before broadcast of the met message, and the lag between broadcast time and
firing time.

A number of factors will affect the spacial staleness, S, in equation (3),
also. These factors include relative position of met station and weapon,

gEngebos, Bernard F., "A Least Squares Approach to Missing Meteorological
Data," ASL-CR-82-0008-1, US Aruy Atmospheric Sciences Laboratory, White Sands
Missile Range, N14, 1982.
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firing direction of the weapon, balloon ascent rate, ballistic line the
projectile will reach, and often, most Importantly, the speed and direction of
the wind. Although spacial staleness is improved when the balloon path and
projectile trajectory are close, space staleness can be quite large when the
firing direction is opposite that of the mean wind and drift of the
radiosonde.

A brief explanation concerning the calculation of terms in equations (1) and
(2) is included to further clarify the text.

1. The impact variance due to wind variability is found by multiplying
the coefficient of ballistic wind variability* (Kn2/min) times the space-time
factor (min) times the square of the unit effect of a range or deflection wind
(m/kn'). (Unit effects were obtained from the proper firing tables).'

2. The temperature and density variability term in equation (1) is found
by multiplying the combined error per unit staleness due to temperature and
density variability* (m2/min) times the space-time factor (min).

3. The combined variance due to temperature and density measurement
uncertainty was computed using a lengthy equation* involving temperature and
density random and bias measurement errors.

4. Impact variances due to wind measurement were calculated by
multiplying the ballistic wind component measurement variance* (kn') times the
square of the unit effect of a range or deflection wind (m/kn').

These ballistic wind component measurement variances, for an AN/GMD-1 tracking
system, were calculated by Swingle* for balloon ascent rates of 300 m/mn, 400
m/mn, and 500 m/m n. This variance includes the error in balloon height
measurement as well as balloon tracking error. There is quite a difference in

. -these variances depending on balloon ascent rate and the ballistic line
number. Table 1 lists these error variances for each balloon ascent rate.
The major source of the error from the tracking system arises from angular
errors because of ground reflections of the radiosonde signals. The tracking
error is a function of balloon elevation angle and is less serious for a fast
rising balloon than for a slower rising balloon.

With the appropriate information at hand, the total range and deflection
impact variances given by equations (1) and (2) can now be calculated. Taking
the square root of the variance yields the standard deviation, and
multiplication by the constant factork 1.1774 converts the standard deviation
to the elliptical probable error of the range and deflection estimate. These
range and deflection probable errors represent the 50 percent confidence
limits for a population of projectiles fired at a fixed target. In other
words, if a number of shells were fired at a target, 50 percent of the shells
would land in an ellipse centered on the target with a major radius equal to

*Swingle, 0. M., unpublished work, US Army Atmospheric Sciences Laboratory,
White Sands Missile Range, NM, 1979.

'Firing Tables, FT 155-AM-1, 1972, FT 8-J-4, 1967, Department of the Army,
Washington, DC.
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TABLE 1. BALLISTIC WIND COMPONENT VARIANCE (Kn') FOR AN AN/GMD-1
TRACKING SYSTEM

Balloon Ascent Rates
Ballistic Line

Number 300 m/Iln 400 m/lmn 500 m/lmn

1 .047 .071 .101

2 .010 .009 .009

3 .016 .011 .009

4 .033 .022 .017

5 .163 .052 .038

6 .804 .071 .051

7 3.505 .219 .092

8 2.685 .549 .132

9 145.239 .773 .137

10 184.254 1.979 .216

11 212.168 3.149 .274

12 258.732 4.113 .419

13 255.730 2.366 .515

14 193.627 1.125 .424

15 142.338 1.031 .301

.4

the range probable error and with a minor radius equal to the deflection
probable error. Again, it should be pointed out that these probable errors

are only the result of variability and measurement uncertainty of the met
parameters; they do not represent errors due to lack of correction for the
meteorology, variations in muzzle velocity, variations in angle of departure,
etc.

RESULTS

* Real meteorological sounding data, from Munich, Germany, in the early spring
-" of 1976, were used for the probable error calculations. In calculating the

*probable errors, the numbers of possible combinatiovis of range, weapon,
charge, and balloon ascent rate are enormous. This problem was reduced to a
manageable size by considering only some of the larger error cases. Since the
unit effects increase with range, the tests made were for long ranges and
larger charges for the 155-mm and 8-in weapon systems. It was also assumed
that the target and gun were at the same altitude. For each range, a low and
high trajectory test was conducted, showing the increased error when firing to
a higher maximum ordinate. To demonstrate the effects of windspeed on the
errors, data for several days of high winds (1 Jan and 21 Jan), low wind (8

~11



Feb), and a baseline test with no wind were generated. All examples assumed a
balloon ascent rate of 400 n/min. All of these assumptions seem realistic for
a battlefield situation. Table 2 shows the firing scenarios for the eleven
cases in which errors were calculated.

TABLE 2. FIRING SCENARIOS FOR THE MET DATA FREQUENCY STUDY

Trajectory Ballistic
Date Tim Range Max Ord Mean Wi nd Wind

Case (1976) (LST) Weapon Charge (km) (k) (kn) (kn)

1 21 Jan 1200 8 in 7 15 2.890 44.86 46.44

2 21 Jan 1200 8 in 7 15 7.544 62.77 73.04

3 21 Jan 1200 8 in 5 10 1.550 40.78 48.65

4 21 Jan 1200 8 in 5 10 4.919 52.64 58.82

5 21 Jan 1200 155 - 8 16 3.056 45.21 52.14

6 21 Jan 1200 155 M 8 15 8.648 64.86 70.97

7 21 Jan 1200 155 - 6W 11 1.865 42.96 48.65

8 21 Jan 1200 155 - 6W 11 5.306 54.35 62.97

9 Imaginary 8 in 7 12 1.445 0.00 0.00

10 8 Feb 1200 8 In 7 12 1.445 2.87 3.28

11 1 Jan 1200 8 in 7 12 1.445 44.12 46.25

For each test the time staleness was varied from 0 to 360 min and the spacial
staleness was varied from 0 to 60 km. The smaller values of staleness, while
not realistic to the battlefield, show the amount of minim. error due to
masurement uncertainty. A complete array of the probable errors for the
entire spacial and temporal range mentioned above is given in tables in
appendix A for all the cases listed in table 2.

Figure 1 shows range probable error versus time staleness for a constant
spacial staleness of 20 km for cases 1 through 8 listed in table 2. As one
would expect the larger errors occur for the longer ranges and higher winds
because unit effects increase with range, and wind variability increases with
windspeed. The lines in this figure are nearly straight, as one might expect
from the linear relationship of time (in the space-time factor) to range
variance in equation (1). The slope of the probable error curve is slightly
larger at the low age end of the graph than for the high end, but the
difference is sall. Obviously, the optimum age for met data so far as
accuracy is concerned will be as mall as possible, since fresher met data
will be used and met parameter variability will be reduced. However, the
information in the figure is useful since the graph does quantify the error as
a function of time lag. Another interesting feature of this graph is that

12
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range probable error does not vanish even if there is no time separation
between measurement and firing. Part of this error is due to the 20 km of
spacial staleness in this example; the remaining amount of error is due to the
measurement uncertainty of wind, temperature, and density.

425 * 'A W

3.?4 CASE
SCASE I

l ,..0 CASE7-*~-- ~CARES4
2 23 CAS3

1

123

10 L A- L- I- -A lI

.1'os 6 6 6 120 In ISO 240 t15.4

TIME STALENEM (min)

Figure 1. Range elliptical probable error versus time staleness while the
spacial staleness was fixed at 20 km (cases 1 through 8).

Figure 2 shows deflection probable error versus time staleness for cases 1
through 8 in table 2. Again a spacial separation of 20 km was used. These
errors are not as large as the range errors nor do they increase quite as
rapidly with increasing temporal staleness, but similar to range error they do1increase in a nearly linear manner. The main reason these deflection errors
are smaller than the corresponding range errors is that the unit effects for
the crosswind component of wind are quite a bit less than for the range wind
component. Recall, too, that temperature and density effects ware small for
the deflection component and, consequently, were neglected.

The effect of spacial staleness on range probable error is shown in figure
3. For these examples the time staleness was fixed at 2 h while the spacial
staleness was varied. Similar to figure 1, and for reasons previously
discussed, the error increases with range and windspeed. These error curves
are quite linear, but the dependence of the error on space is a little weaker
than the dependence on time as shown in figure 1. The main reason for the
weaker dependence is that in the space and time scales of the battlefield, the
variability of wind in time is usually greater than in space. Recall that a
2-mn change in tim is approximately equivalent to a 1 km change in space. A
typical met spacial staleness is about 25 km and a typical time staleness from
measurement to use is about 3 h. Using the above rule the staleness owing to
met spacing is 2 mtn/km times 25 km or 50 min, while the staleness owing to
time is 180 in.

13
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Figure 4 is a graph of deflection probable error versus spacial staleness
while the tim lag was fixed at 2 h. The deflection probable errors are again
less than the range probable errors. Also note that the slopes of the lines
In figure 4 are not as large as those in figure 2 since met parameter
variability in time is usually greater than in space.

To further access the effects of windspeed on probable error, several trials
were conducted wnere ballistic windspeed ranged from moderate to an imaginary
case with no wind while all other parameters, like range and quadrant
elevation (QE), remained constant. The firing scenarios used were cases 9,
10, and 11 from table 2.

Figure 5 shows both the range and deflection probable error versus time
staleness for a constant spacial staleness of 20 km. Again, errors increase
with windspeed, the rate of error growth increases with speed, and errors do
not disappear in the absence of wind since there is still a measurement
uncertainty even when we have measured no wind. Also temperature and density
contributions to the error are still left in the case of range probable error.

Figure 6 shows plots of probable error as a function of spacial staleness
while the time lag was held at 2 h. The errors in this figure are linear with
distance, and the size of the error is directly related to windspeed since all
other met and firing conditions rem&*n constant for these cases. Again the
probable error rate of change in space is less than the change in time for the
space and time scales in these examples.

Trying to separate the individual effects of wind, temperature, and density
when viewing these §raph-Y is quite difficult. To illustrate their effects,
the individual range' -nd deflection impact standard deviations as a function
of space and time have been listed for cases 9 and 11 of table 2 in appendix
A. Note that the errors due to measurement remain constant as time or space
is varied. This occurs since the error is made at the time of measurement and
does not depend on when the measured value is used. For a moderate ballistic
wind, case 11, the errors due to met variability are dominant over the
measurement errors with the range wind variability error being the largest.
However, even with no wind as in case 9, the range wind variability is still
the dominant error. This illustrates the importance of knowing the current
wind no matter what its value. For these examples temperature and density
variability and measurement errors were both important, but wind measurement
error was quite small.

CONCLUSIONS

This study seems to reinforce what is already known: variability of ballistic
wind is the largest source of met error for artillery weapons; but errors
caused by temperature and density variation can make substantial contributions
to the total error, especially when winds are light. The contribution to the
total error because of wind measurement is highly dependent on balloon ascent
rate and the ballistic zone to which measurements are made. Using a balloon
with a 300 m/mnd ascent rate when making measurements above ballistic zone 8
can produce tremendous errors as seen by the measurement uncertainties listed
in table 1. While the results of this study indicate what the optimum spacial
and temporal frequency for obtaining met data is, as one would expect, as
often as possible, the study is useful in quantifying errors that do exist.
The user, then, can decide what trade-off is best for a particular battlefield
situation.
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APPENDIX A

Tables A-i through A-11 present range and deflection elliptical probable
errors as a function of spacial and temporal staleness for all cases listed in
table 2 in the text. Tables A-12 through A-15 present the individual range

*j and deflection impact standard deviations as a function of space and time
staleness for cases 9and 11 in table 2 in the text.
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